Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909332

RESUMO

Cronkhite-Canada Syndrome (CCS) is a rare, noninherited polyposis syndrome affecting 1 in every million individuals. Despite over 50 years of CCS cases, the etiopathogenesis and optimal treatment for CCS remains unknown due to the rarity of the disease and lack of model systems. To better understand the etiology of CCS, we generated human intestinal organoids (HIOs) from intestinal stem cells isolated from 2 patients. We discovered that CCS HIOs are highly proliferative and have increased numbers of enteroendocrine cells producing serotonin (also known as 5-hydroxytryptamine or 5HT). These features were also confirmed in patient tissue biopsies. Recombinant 5HT increased proliferation of non-CCS donor HIOs and inhibition of 5HT production in the CCS HIOs resulted in decreased proliferation, suggesting a link between local epithelial 5HT production and control of epithelial stem cell proliferation. This link was confirmed in genetically engineered HIOs with an increased number of enteroendocrine cells. This work provides a new mechanism to explain the pathogenesis of CCS and illustrates the important contribution of HIO cultures to understanding disease etiology and in the identification of novel therapies. Our work demonstrates the principle of using organoids for personalized medicine and sheds light on how intestinal hormones can play a role in intestinal epithelial proliferation.


Assuntos
Neoplasias Colorretais , Polipose Intestinal , Humanos , Serotonina , Intestinos , Organoides/patologia , Neoplasias Colorretais/patologia , Polipose Intestinal/genética , Polipose Intestinal/patologia
2.
Gut Microbes ; 15(2): 2256043, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698879

RESUMO

Intestinal microbes impact the health of the intestine and organs distal to the gut. Limosilactobacillus reuteri is a human intestinal microbe that promotes normal gut transit, the anti-inflammatory immune system, wound healing, normal social behavior in mice, and prevents bone reabsorption. Oxytocin impacts these functions and oxytocin signaling is required for L. reuteri-mediated wound healing and social behavior; however, the events in the gut leading to oxytocin stimulation and beneficial effects are unknown. Here we report evolutionarily conserved oxytocin production in the intestinal epithelium through analysis of single-cell RNA-Seq datasets and imaging of human and mouse intestinal tissues. Moreover, human intestinal organoids produce oxytocin, demonstrating that the intestinal epithelium is sufficient to produce oxytocin. We find that L. reuteri facilitates oxytocin secretion from human intestinal tissue and human intestinal organoids. Finally, we demonstrate that stimulation of oxytocin secretion by L. reuteri is dependent on the gut hormone secretin, which is produced in enteroendocrine cells, while oxytocin itself is produced in enterocytes. Altogether, this work demonstrates that oxytocin is produced and secreted from enterocytes in the intestinal epithelium in response to secretin stimulated by L. reuteri. This work thereby identifies oxytocin as an intestinal hormone and provides mechanistic insight into avenues by which gut microbes promote host health.


Assuntos
Hormônios Gastrointestinais , Microbioma Gastrointestinal , Limosilactobacillus reuteri , Humanos , Animais , Camundongos , Secretina , Ocitocina , Mucosa Intestinal
3.
bioRxiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945649

RESUMO

Intestinal microbes impact the health of the intestine and organs distal to the gut. Limosilactobacillus reuteri is a human intestinal microbe that promotes normal gut transit 1 , the anti-inflammatory immune system 2-4 , wound healing 5-7 , normal social behavior in mice 8-10 , and prevents bone reabsorption 11-17 . Each of these functions is impacted by oxytocin 18-22 , and oxytocin signaling is required for L. reuteri- mediated wound healing 5 and social behavior 9 ; however, the initiating events in the gut that lead to oxytocin stimulation and related beneficial functions remain unknown. Here we found evolutionarily conserved oxytocin production in the intestinal epithelium through analysis of single-cell RNA-Seq datasets and imaging of human and mouse intestinal tissues. Moreover, human intestinal organoids produce oxytocin, demonstrating that the intestinal epithelium is sufficient to produce oxytocin. We subsequently found that L. reuteri facilitates oxytocin secretion directly from human intestinal tissue and human intestinal organoids. Finally, we demonstrate that stimulation of oxytocin secretion by L. reuteri is dependent on the gut hormone secretin, which is produced in enteroendocrine cells 23 , while oxytocin itself is produced in enterocytes. Altogether, this work demonstrates that oxytocin is produced and secreted from enterocytes in the intestinal epithelium in response to secretin stimulated by L. reuteri . This work thereby identifies oxytocin as an intestinal hormone and provides mechanistic insight into avenues by which gut microbes promote host health.

4.
Proc Natl Acad Sci U S A ; 119(18): e2119396119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476524

RESUMO

Combatting Clostridioides difficile infections, a dominant cause of hospital-associated infections with incidence and resulting deaths increasing worldwide, is complicated by the frequent emergence of new virulent strains. Here, we employ whole-genome sequencing, high-throughput phenotypic screenings, and genome-scale models of metabolism to evaluate the genetic diversity of 451 strains of C. difficile. Constructing the C. difficile pangenome based on this set revealed 9,924 distinct gene clusters, of which 2,899 (29%) are defined as core, 2,968 (30%) are defined as unique, and the remaining 4,057 (41%) are defined as accessory. We develop a strain typing method, sequence typing by accessory genome (STAG), that identifies 176 genetically distinct groups of strains and allows for explicit interrogation of accessory gene content. Thirty-five strains representative of the overall set were experimentally profiled on 95 different nutrient sources, revealing 26 distinct growth profiles and unique nutrient preferences; 451 strain-specific genome scale models of metabolism were constructed, allowing us to computationally probe phenotypic diversity in 28,864 unique conditions. The models create a mechanistic link between the observed phenotypes and strain-specific genetic differences and exhibit an ability to correctly predict growth in 76% of measured cases. The typing and model predictions are used to identify and contextualize discriminating genetic features and phenotypes that may contribute to the emergence of new problematic strains.


Assuntos
Clostridioides difficile , Infecção Hospitalar , Clostridioides , Clostridioides difficile/genética , Variação Genética , Humanos , Biologia de Sistemas
5.
Anaerobe ; 70: 102387, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34044101

RESUMO

BACKGROUND: Fecal microbiota transplantation (FMT) aims to cure Clostridioides difficile infection (CDI) through reestablishing a healthy microbiome and restoring colonization resistance. Although often effective after one infusion, patients with continued microbiome disruptions may require multiple FMTs. In this N-of-1 study, we use a systems biology approach to evaluate CDI in a patient receiving chronic suppressive antibiotics with four failed FMTs over two years. METHODS: Seven stool samples were obtained between 2016-18 while the patient underwent five FMTs. Stool samples were cultured for C. difficile and underwent microbial characterization and functional gene analysis using shotgun metagenomics. C. difficile isolates were characterized through ribotyping, whole genome sequencing, metabolic pathway analysis, and minimum inhibitory concentration (MIC) determinations. RESULTS: Growing ten strains from each sample, the index and first four recurrent cultures were single strain ribotype F078-126, the fifth was a mixed culture of ribotypes F002 and F054, and the final culture was ribotype F002. One single nucleotide polymorphism (SNP) variant was identified in the RNA polymerase (RNAP) ß-subunit RpoB in the final isolated F078-126 strain when compared to previous F078-126 isolates. This SNV was associated with metabolic shifts but phenotypic differences in fidaxomicin MIC were not observed. Microbiome differences were observed over time during vancomycin therapy and after failed FMTs. CONCLUSION: This study highlights the importance of antimicrobial stewardship in patients receiving FMT. Continued antibiotics play a destructive role on a transplanted microbiome and applies selection pressure for resistance to the few antibiotics available to treat CDI.


Assuntos
Clostridioides difficile/fisiologia , Infecções por Clostridium/terapia , Transplante de Microbiota Fecal , Antibacterianos/administração & dosagem , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/microbiologia , Fezes , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Polimorfismo de Nucleotídeo Único , Falha de Tratamento
6.
BMC Microbiol ; 21(1): 154, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34030655

RESUMO

BACKGROUND: Bifidobacteria are commensal microbes of the mammalian gastrointestinal tract. In this study, we aimed to identify the intestinal colonization mechanisms and key metabolic pathways implemented by Bifidobacterium dentium. RESULTS: B. dentium displayed acid resistance, with high viability over a pH range from 4 to 7; findings that correlated to the expression of Na+/H+ antiporters within the B. dentium genome. B. dentium was found to adhere to human MUC2+ mucus and harbor mucin-binding proteins. Using microbial phenotyping microarrays and fully-defined media, we demonstrated that in the absence of glucose, B. dentium could metabolize a variety of nutrient sources. Many of these nutrient sources were plant-based, suggesting that B. dentium can consume dietary substances. In contrast to other bifidobacteria, B. dentium was largely unable to grow on compounds found in human mucus; a finding that was supported by its glycosyl hydrolase (GH) profile. Of the proteins identified in B. dentium by proteomic analysis, a large cohort of proteins were associated with diverse metabolic pathways, indicating metabolic plasticity which supports colonization of the dynamic gastrointestinal environment. CONCLUSIONS: Taken together, we conclude that B. dentium is well adapted for commensalism in the gastrointestinal tract.


Assuntos
Bifidobacterium/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Ácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium/genética , Bifidobacterium/crescimento & desenvolvimento , Trato Gastrointestinal/fisiologia , Genoma Bacteriano , Glucose/metabolismo , Humanos , Simbiose
7.
mBio ; 12(2)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653893

RESUMO

Multiple studies have implicated microbes in the development of inflammation, but the mechanisms remain unknown. Bacteria in the genus Fusobacterium have been identified in the intestinal mucosa of patients with digestive diseases; thus, we hypothesized that Fusobacterium nucleatum promotes intestinal inflammation. The addition of >50 kDa F. nucleatum conditioned media, which contain outer membrane vesicles (OMVs), to colonic epithelial cells stimulated secretion of the proinflammatory cytokines interleukin-8 (IL-8) and tumor necrosis factor (TNF). In addition, purified F. nucleatum OMVs, but not compounds <50 kDa, stimulated IL-8 and TNF production; which was decreased by pharmacological inhibition of Toll-like receptor 4 (TLR4). These effects were linked to downstream effectors p-ERK, p-CREB, and NF-κB. F. nucleatum >50-kDa compounds also stimulated TNF secretion, p-ERK, p-CREB, and NF-κB activation in human colonoid monolayers. In mice harboring a human microbiota, pretreatment with antibiotics and a single oral gavage of F. nucleatum resulted in inflammation. Compared to mice receiving vehicle control, mice treated with F. nucleatum showed disruption of the colonic architecture, with increased immune cell infiltration and depleted mucus layers. Analysis of mucosal gene expression revealed increased levels of proinflammatory cytokines (KC, TNF, IL-6, IFN-γ, and MCP-1) at day 3 and day 5 in F. nucleatum-treated mice compared to controls. These proinflammatory effects were absent in mice who received F. nucleatum without pretreatment with antibiotics, suggesting that an intact microbiome is protective against F. nucleatum-mediated immune responses. These data provide evidence that F. nucleatum promotes proinflammatory signaling cascades in the context of a depleted intestinal microbiome.IMPORTANCE Several studies have identified an increased abundance of Fusobacterium in the intestinal tracts of patients with colon cancer, liver cirrhosis, primary sclerosing cholangitis, gastroesophageal reflux disease, HIV infection, and alcoholism. However, the direct mechanism(s) of action of Fusobacterium on pathophysiological within the gastrointestinal tract is unclear. These studies have identified that F. nucleatum subsp. polymorphum releases outer membrane vesicles which activate TLR4 and NF-κB to stimulate proinflammatory signals in vitro Using mice harboring a human microbiome, we demonstrate that F. nucleatum can promote inflammation, an effect which required antibiotic-mediated alterations in the gut microbiome. Collectively, these results suggest a mechanism by which F. nucleatum may contribute to intestinal inflammation.


Assuntos
Membrana Externa Bacteriana/imunologia , Vesículas Extracelulares/imunologia , Fusobacterium nucleatum/imunologia , Fusobacterium nucleatum/metabolismo , Inflamação/microbiologia , Animais , Células Cultivadas , Colo/citologia , Meios de Cultura/farmacologia , Citocinas/análise , Citocinas/imunologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Feminino , Fusobacterium nucleatum/patogenicidade , Microbioma Gastrointestinal , Células HT29 , Humanos , Inflamação/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , Transdução de Sinais , Receptor 4 Toll-Like/imunologia
8.
Gastroenterology ; 160(4): 1301-1314.e8, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33227279

RESUMO

BACKGROUND & AIMS: Although Clostridioides difficile infection (CDI) is known to involve the disruption of the gut microbiota, little is understood regarding how mucus-associated microbes interact with C difficile. We hypothesized that select mucus-associated bacteria would promote C difficile colonization and biofilm formation. METHODS: To create a model of the human intestinal mucus layer and gut microbiota, we used bioreactors inoculated with healthy human feces, treated with clindamycin and infected with C difficile with the addition of human MUC2-coated coverslips. RESULTS: C difficile was found to colonize and form biofilms on MUC2-coated coverslips, and 16S rRNA sequencing showed a unique biofilm profile with substantial cocolonization with Fusobacterium species. Consistent with our bioreactor data, publicly available data sets and patient stool samples showed that a subset of patients with C difficile infection harbored high levels of Fusobacterium species. We observed colocalization of C difficile and F nucleatum in an aggregation assay using adult patients and stool of pediatric patients with inflammatory bowel disease and in tissue sections of patients with CDI. C difficile strains were found to coaggregate with F nucleatum subspecies in vitro; an effect that was inhibited by blocking or mutating the adhesin RadD on Fusobacterium and removal of flagella on C difficile. Aggregation was shown to be unique between F nucleatum and C difficile, because other gut commensals did not aggregate with C difficile. Addition of F nucleatum also enhanced C difficile biofilm formation and extracellular polysaccharide production. CONCLUSIONS: Collectively, these data show a unique interaction of between pathogenic C difficile and F nucleatum in the intestinal mucus layer.


Assuntos
Adesinas Bacterianas/metabolismo , Clostridioides difficile/patogenicidade , Infecções por Clostridium/imunologia , Fusobacterium nucleatum/imunologia , Microbioma Gastrointestinal/imunologia , Adesinas Bacterianas/genética , Aderência Bacteriana/imunologia , Biofilmes , Reatores Biológicos/microbiologia , Clostridioides difficile/genética , Clostridioides difficile/imunologia , Clostridioides difficile/metabolismo , Infecções por Clostridium/microbiologia , Fezes/microbiologia , Flagelos/genética , Flagelos/metabolismo , Fusobacterium nucleatum/metabolismo , Células HT29 , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Mucina-2/metabolismo
9.
Cell Mol Gastroenterol Hepatol ; 11(1): 221-248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32795610

RESUMO

BACKGROUND & AIMS: The human gut microbiota can regulate production of serotonin (5-hydroxytryptamine [5-HT]) from enterochromaffin cells. However, the mechanisms underlying microbial-induced serotonin signaling are not well understood. METHODS: Adult germ-free mice were treated with sterile media, live Bifidobacterium dentium, heat-killed B dentium, or live Bacteroides ovatus. Mouse and human enteroids were used to assess the effects of B dentium metabolites on 5-HT release from enterochromaffin cells. In vitro and in vivo short-chain fatty acids and 5-HT levels were assessed by mass spectrometry. Expression of tryptophan hydroxylase, short-chain fatty acid receptor free fatty acid receptor 2, 5-HT receptors, and the 5-HT re-uptake transporter (serotonin transporter) were assessed by quantitative polymerase chain reaction and immunostaining. RNA in situ hybridization assessed 5-HT-receptor expression in the brain, and 5-HT-receptor-dependent behavior was evaluated using the marble burying test. RESULTS: B dentium mono-associated mice showed increased fecal acetate. This finding corresponded with increased intestinal 5-HT concentrations and increased expression of 5-HT receptors 2a, 4, and serotonin transporter. These effects were absent in B ovatus-treated mice. Application of acetate and B dentium-secreted products stimulated 5-HT release in mouse and human enteroids. In situ hybridization of brain tissue also showed significantly increased hippocampal expression of 5-HT-receptor 2a in B dentium-treated mice relative to germ-free controls. Functionally, B dentium colonization normalized species-typical repetitive and anxiety-like behaviors previously shown to be linked to 5-HT-receptor 2a. CONCLUSIONS: These data suggest that B dentium, and the bacterial metabolite acetate, are capable of regulating key components of the serotonergic system in multiple host tissues, and are associated with a functional change in adult behavior.


Assuntos
Bifidobacterium/metabolismo , Eixo Encéfalo-Intestino/fisiologia , Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Serotonina/metabolismo , Acetatos/metabolismo , Animais , Comportamento Animal/fisiologia , Bifidobacterium/isolamento & purificação , Técnicas de Cultura de Células , Células Enterocromafins/metabolismo , Vida Livre de Germes , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Modelos Animais , Organoides , Receptores de Serotonina/metabolismo
10.
Science ; 370(6519)2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33214249

RESUMO

Rotavirus causes severe diarrheal disease in children by broadly dysregulating intestinal homeostasis. However, the underlying mechanism(s) of rotavirus-induced dysregulation remains unclear. We found that rotavirus-infected cells produce paracrine signals that manifested as intercellular calcium waves (ICWs), observed in cell lines and human intestinal enteroids. Rotavirus ICWs were caused by the release of extracellular adenosine 5'-diphosphate (ADP) that activated P2Y1 purinergic receptors on neighboring cells. ICWs were blocked by P2Y1 antagonists or CRISPR-Cas9 knockout of the P2Y1 receptor. Blocking the ADP signal reduced rotavirus replication, inhibited rotavirus-induced serotonin release and fluid secretion, and reduced diarrhea severity in neonatal mice. Thus, rotavirus exploited paracrine purinergic signaling to generate ICWs that amplified the dysregulation of host cells and altered gastrointestinal physiology to cause diarrhea.


Assuntos
Difosfato de Adenosina/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Infecções por Rotavirus/metabolismo , Rotavirus/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Feminino , Células HEK293 , Humanos , Jejuno/metabolismo , Jejuno/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Comunicação Parácrina , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo
11.
NPJ Syst Biol Appl ; 6(1): 31, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082337

RESUMO

Hospital acquired Clostridioides (Clostridium) difficile infection is exacerbated by the continued evolution of C. difficile strains, a phenomenon studied by multiple laboratories using stock cultures specific to each laboratory. Intralaboratory evolution of strains contributes to interlaboratory variation in experimental results adding to the challenges of scientific rigor and reproducibility. To explore how microevolution of C. difficile within laboratories influences the metabolic capacity of an organism, three different laboratory stock isolates of the C. difficile 630 reference strain were whole-genome sequenced and profiled in over 180 nutrient environments using phenotypic microarrays. The results identified differences in growth dynamics for 32 carbon sources including trehalose, fructose, and mannose. An updated genome-scale model for C. difficile 630 was constructed and used to contextualize the 28 unique mutations observed between the stock cultures. The integration of phenotypic screens with model predictions identified pathways enabling catabolism of ethanolamine, salicin, arbutin, and N-acetyl-galactosamine that differentiated individual C. difficile 630 laboratory isolates. The reconstruction was used as a framework to analyze the core-genome of 415 publicly available C. difficile genomes and identify areas of metabolism prone to evolution within the species. Genes encoding enzymes and transporters involved in starch metabolism and iron acquisition were more variable while C. difficile distinct metabolic functions like Stickland fermentation were more consistent. A substitution in the trehalose PTS system was identified with potential implications in strain virulence. Thus, pairing genome-scale models with large-scale physiological and genomic data enables a mechanistic framework for studying the evolution of pathogens within microenvironments and will lead to predictive modeling to combat pathogen emergence.


Assuntos
Clostridioides difficile/genética , Meio Ambiente , Evolução Molecular , Genômica , Genótipo , Fenótipo , Biologia de Sistemas , Genoma Bacteriano/genética , Filogenia
12.
Gut Microbes ; 12(1): 1788898, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32804011

RESUMO

Antibiotic resistance is one of the world's greatest public health challenges and adjunct probiotic therapies are strategies that could lessen this burden. Clostridioides difficile infection (CDI) is a prime example where adjunct probiotic therapies could decrease disease incidence through prevention. Human-derived Lactobacillus reuteri is a probiotic that produces the antimicrobial compound reuterin known to prevent C. difficile colonization of antibiotic-treated fecal microbial communities. However, the mechanism of inhibition is unclear. We show that reuterin inhibits C. difficile outgrowth from spores and vegetative cell growth, however, no effect on C. difficile germination or sporulation was observed. Consistent with published studies, we found that exposure to reuterin stimulated reactive oxygen species (ROS) in C. difficile, resulting in a concentration-dependent reduction in cell viability that was rescued by the antioxidant glutathione. Sublethal concentrations of reuterin enhanced the susceptibility of vegetative C. difficile to vancomycin and metronidazole treatment and reduced toxin synthesis by C. difficile. We also demonstrate that reuterin is protective against C. difficile toxin-mediated cellular damage in the human intestinal enteroid model. Overall, our results indicate that ROS are essential mediators of reuterin activity and show that reuterin production by L. reuteri is compatible as a therapeutic in a clinically relevant model.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Gliceraldeído/análogos & derivados , Propano/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidade , Sinergismo Farmacológico , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Gliceraldeído/metabolismo , Gliceraldeído/farmacologia , Humanos , Limosilactobacillus reuteri/metabolismo , Organoides/efeitos dos fármacos , Organoides/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Probióticos/metabolismo , Propano/metabolismo , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento
13.
J Physiol ; 598(15): 3085-3105, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32428244

RESUMO

KEY POINTS: Enteroids are a physiologically relevant model to examine the human intestine and its functions. Previously, the measurable cytokine response of human intestinal enteroids has been limited following exposure to host or microbial pro-inflammatory stimuli. Modifications to enteroid culture conditions facilitated robust human cytokine responses to pro-inflammatory stimuli. This new human enteroid culture methodology refines the ability to study microbiome:human intestinal epithelium interactions in the laboratory. ABSTRACT: The intestinal epithelium is the primary interface between the host, the gut microbiome and its external environment. Since the intestinal epithelium contributes to innate immunity as a first line of defence, understanding how the epithelium responds to microbial and host stimuli is an important consideration in promoting homeostasis. Human intestinal enteroids (HIEs) are primary epithelial cell cultures that can provide insights into the biology of the intestinal epithelium and innate immune responses. One potential limitation of using HIEs for innate immune studies is the relative lack of responsiveness to factors that stimulate epithelial cytokine production. We report technical refinements, including removal of extracellular antioxidants, to facilitate enhanced cytokine responses in HIEs. Using this new method, we demonstrate that HIEs have distinct cytokine profiles in response to pro-inflammatory stimuli derived from host and microbial sources. Overall, we found that host-derived cytokines tumour necrosis factor and interleukin-1α stimulated reactive oxygen species and a large repertoire of cytokines. In contrast, microbial lipopolysaccharide, lipoteichoic acid and flagellin stimulated a limited number of cytokines and histamine did not stimulate the release of any cytokines. Importantly, HIE-secreted cytokines were functionally active, as denoted by the ability of human blood-derived neutrophil to migrate towards HIE supernatant containing interleukin-8. These findings establish that the immune responsiveness of HIEs depends on medium composition and stimuli. By refining the experimental culture medium and creating an environment conducive to epithelial cytokine responses by human enteroids, HIEs can facilitate exploration of many experimental questions pertaining to the role of the intestinal epithelium in innate immunity.


Assuntos
Mucosa Intestinal , Jejuno , Células Epiteliais , Humanos , Imunidade Inata , Intestinos
14.
Am J Physiol Gastrointest Liver Physiol ; 318(5): G870-G888, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32223302

RESUMO

Clostridioides difficile is an important nosocomial pathogen that produces toxins to cause life-threatening diarrhea and colitis. Toxins bind to epithelial receptors and promote the collapse of the actin cytoskeleton. C. difficile toxin activity is commonly studied in cancer-derived and immortalized cell lines. However, the biological relevance of these models is limited. Moreover, no model is available for examining C. difficile-induced enteritis, an understudied health problem. We hypothesized that human intestinal enteroids (HIEs) express toxin receptors and provide a new model to dissect C. difficile cytotoxicity in the small intestine. We generated biopsy-derived jejunal HIE and Vero cells, which stably express LifeAct-Ruby, a fluorescent label of F-actin, to monitor actin cytoskeleton rearrangement by live-cell microscopy. Imaging analysis revealed that toxins from pathogenic C. difficile strains elicited cell rounding in a strain-dependent manner, and HIEs were tenfold more sensitive to toxin A (TcdA) than toxin B (TcdB). By quantitative PCR, we paradoxically found that HIEs expressed greater quantities of toxin receptor mRNA and yet exhibited decreased sensitivity to toxins when compared with traditionally used cell lines. We reasoned that these differences may be explained by components, such as mucins, that are present in HIEs cultures, that are absent in immortalized cell lines. Addition of human-derived mucin 2 (MUC2) to Vero cells delayed cell rounding, indicating that mucus serves as a barrier to toxin-receptor binding. This work highlights that investigation of C. difficile infection in that HIEs can provide important insights into the intricate interactions between toxins and the human intestinal epithelium.NEW & NOTEWORTHY In this article, we developed a novel model of Clostridioides difficile-induced enteritis using jejunal-derived human intestinal enteroids (HIEs) transduced with fluorescently tagged F-actin. Using live-imaging, we identified that jejunal HIEs express high levels of TcdA and CDT receptors, are more sensitive to TcdA than TcdB, and secrete mucus, which delays toxin-epithelial interactions. This work also optimizes optically clear C. difficile-conditioned media suitable for live-cell imaging.


Assuntos
Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Enterite/microbiologia , Jejuno/microbiologia , ADP Ribose Transferases/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/microbiologia , Citoesqueleto de Actina/ultraestrutura , Animais , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Forma Celular , Chlorocebus aethiops , Clostridioides difficile/metabolismo , Infecções por Clostridium/metabolismo , Infecções por Clostridium/patologia , Enterite/metabolismo , Enterite/patologia , Enterotoxinas/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Jejuno/metabolismo , Jejuno/ultraestrutura , Mucina-2/metabolismo , Organoides , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Tempo , Células Vero , Virulência
15.
Cell Mol Gastroenterol Hepatol ; 8(2): 209-229, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31029854

RESUMO

BACKGROUND & AIMS: Enteroendocrine cells (EECs) are specialized epithelial cells that produce molecules vital for intestinal homeostasis, but because of their limited numbers, in-depth functional studies have remained challenging. Human intestinal enteroids (HIEs) that are derived from intestinal crypt stem cells are biologically relevant in an in vitro model of the intestinal epithelium. HIEs contain all intestinal epithelial cell types; however, similar to the intestine, HIEs spontaneously produce few EECs, which limits their study. METHODS: To increase the number of EECs in HIEs, we used lentivirus transduction to stably engineer jejunal HIEs with doxycycline-inducible expression of neurogenin-3 (NGN3), a transcription factor that drives EEC differentiation (tetNGN3-HIEs). We examined the impact of NGN3 induction on EECs by quantifying the increase in the enterochromaffin cells and other EEC subtypes. We functionally assessed secretion of serotonin and EEC hormones in response to norepinephrine and rotavirus infection. RESULTS: Treating tetNGN3-HIEs with doxycycline induced a dose-dependent increase of chromogranin A (ChgA)-positive and serotonin-positive cells, showing increased enterochromaffin cell differentiation. Despite increased ChgA-positive cells, other differentiated cell types of the epithelium remained largely unchanged by gene expression and immunostaining. RNA sequencing of doxycycline-induced tetNGN3-HIEs identified increased expression of key hormones and enzymes associated with several other EEC subtypes. Doxycycline-induced tetNGN3-HIEs secreted serotonin, monocyte chemoattractant protein-1, glucose-dependent insulinotropic peptide, peptide YY, and ghrelin in response to norepinephrine and rotavirus infection, further supporting the presence of multiple EEC types. CONCLUSIONS: We have combined HIEs and inducible-NGN3 expression to establish a flexible in vitro model system for functional studies of EECs in enteroids and advance the molecular and physiological investigation of EECs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Enteroendócrinas/metabolismo , Hormônios Gastrointestinais/metabolismo , Intestinos , Proteínas do Tecido Nervoso/genética , Via Secretória , Esferoides Celulares , Regulação da Expressão Gênica , Humanos , Modelos Biológicos
16.
mBio ; 7(6)2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27935835

RESUMO

The opportunistic fungal pathogen Candida albicans thrives within diverse niches in the mammalian host. Among the adaptations that underlie this fitness is an ability to utilize a wide array of nutrients, especially sources of carbon that are disfavored by many other fungi; this contributes to its ability to survive interactions with the phagocytes that serve as key barriers against disseminated infections. We have reported that C. albicans generates ammonia as a byproduct of amino acid catabolism to neutralize the acidic phagolysosome and promote hyphal morphogenesis in a manner dependent on the Stp2 transcription factor. Here, we report that this species rapidly neutralizes acidic environments when utilizing carboxylic acids like pyruvate, α-ketoglutarate (αKG), or lactate as the primary carbon source. Unlike in cells growing in amino acid-rich medium, this does not result in ammonia release, does not induce hyphal differentiation, and is genetically distinct. While transcript profiling revealed significant similarities in gene expression in cells grown on either carboxylic or amino acids, genetic screens for mutants that fail to neutralize αKG medium identified a nonoverlapping set of genes, including CWT1, encoding a transcription factor responsive to cell wall and nitrosative stresses. Strains lacking CWT1 exhibit retarded αKG-mediated neutralization in vitro, exist in a more acidic phagolysosome, and are more susceptible to macrophage killing, while double cwt1Δ stp2Δ mutants are more impaired than either single mutant. Together, our observations indicate that C. albicans has evolved multiple ways to modulate the pH of host-relevant environments to promote its fitness as a pathogen. IMPORTANCE: The fungal pathogen Candida albicans is a ubiquitous and usually benign constituent of the human microbial ecosystem. In individuals with weakened immune systems, this organism can cause potentially life-threatening infections and is one of the most common causes of hospital-acquired infections. Understanding the interactions between C. albicans and immune phagocytic cells, such as macrophages and neutrophils, will define the mechanisms of pathogenesis in this species. One such adaptation is an ability to make use of nonstandard nutrients that we predict are plentiful in certain niches within the host, including within these phagocytic cells. We show here that the metabolism of certain organic acids enables C. albicans to neutralize acidic environments, such as those within macrophages. This phenomenon is distinct in several significant ways from previous reports of similar processes, indicating that C. albicans has evolved multiple mechanisms to combat the harmful acidity of phagocytic cells.


Assuntos
Aminoácidos/metabolismo , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Ácidos Carboxílicos/metabolismo , Aminoácidos/farmacologia , Amônia/metabolismo , Animais , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Ácidos Carboxílicos/farmacologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Concentração de Íons de Hidrogênio , Ácidos Cetoglutáricos/metabolismo , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Mutação , Fagossomos/química , Ácido Pirúvico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Infect Immun ; 83(11): 4416-26, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26351284

RESUMO

Candida albicans is an opportunistic human fungal pathogen that causes a variety of diseases, ranging from superficial mucosal to life-threatening systemic infections, the latter particularly in patients with defects in innate immune function. C. albicans cells phagocytosed by macrophages undergo a dramatic change in their metabolism in which amino acids are a key nutrient. We have shown that amino acid catabolism allows the cell to neutralize the phagolysosome and initiate hyphal growth. We show here that members of the 10-gene ATO family, which are induced by phagocytosis or the presence of amino acids in an Stp2-dependent manner and encode putative acetate or ammonia transporters, are important effectors of this pH change in vitro and in macrophages. When grown with amino acids as the sole carbon source, the deletion of ATO5 or the expression of a dominant-negative ATO1(G53D) allele results in a delay in alkalinization, a defect in hyphal formation, and a reduction in the amount of ammonia released from the cell. These strains also form fewer hyphae after phagocytosis, have a reduced ability to escape macrophages, and reside in more acidic phagolysosomal compartments than wild-type cells. Furthermore, overexpression of many of the 10 ATO genes accelerates ammonia release, and an ato5Δ ATO1(G53D) double mutant strain has additive alkalinization and ammonia release defects. Taken together, these results indicate that the Ato protein family is a key mediator of the metabolic changes that allow C. albicans to overcome the macrophage innate immunity barrier.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Proteínas Fúngicas/imunologia , Macrófagos/imunologia , Família Multigênica , Fagossomos/imunologia , Animais , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candidíase/microbiologia , Feminino , Proteínas Fúngicas/genética , Humanos , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos ICR , Fagocitose , Fagossomos/genética
18.
mBio ; 2(3): e00055-11, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21586647

RESUMO

UNLABELLED: pH homeostasis is critical for all organisms; in the fungal pathogen Candida albicans, pH adaptation is critical for virulence in distinct host niches. We demonstrate that beyond adaptation, C. albicans actively neutralizes the environment from either acidic or alkaline pHs. Under acidic conditions, this species can raise the pH from 4 to >7 in less than 12 h, resulting in autoinduction of the yeast-hyphal transition, a critical virulence trait. Extracellular alkalinization has been reported to occur in several fungal species, but under the specific conditions that we describe, the phenomenon is more rapid than previously observed. Alkalinization is linked to carbon deprivation, as it occurs in glucose-poor media and requires exogenous amino acids. These conditions are similar to those predicted to exist inside phagocytic cells, and we find a strong correlation between the use of amino acids as a cellular carbon source and the degree of alkalinization. Genetic and genomic approaches indicate an emphasis on amino acid uptake and catabolism in alkalinizing cells. Mutations in four genes, STP2, a transcription factor regulating amino acid permeases, ACH1 (acetyl-coenzyme A [acetyl-CoA] hydrolase), DUR1,2 (urea amidolyase), and ATO5, a putative ammonia transporter, abolish or delay neutralization. The pH changes are the result of the extrusion of ammonia, as observed in other fungi. We propose that nutrient-deprived C. albicans cells catabolize amino acids as a carbon source, excreting the amino nitrogen as ammonia to raise environmental pH and stimulate morphogenesis, thus directly contributing to pathogenesis. IMPORTANCE: Candida albicans is the most important fungal pathogen of humans, causing disease at multiple body sites. The ability to switch between multiple morphologies, including a rounded yeast cell and an elongated hyphal cell, is a key virulence trait in this species, as this reversible switch is thought to promote dissemination and tissue invasion in the host. We report here that C. albicans can actively alter the pH of its environment and induce its switch to the hyphal form. The change in pH is caused by the release of ammonia from the cells produced during the breakdown of amino acids. This phenomenon is unprecedented in a human pathogen and may substantially impact host physiology by linking morphogenesis, pH adaptation, carbon metabolism, and interactions with host cells, all of which are critical for the ability of C. albicans to cause disease.


Assuntos
Candida albicans/metabolismo , Candida albicans/patogenicidade , Meios de Cultura/química , Hifas/crescimento & desenvolvimento , Aminoácidos/metabolismo , Candida albicans/crescimento & desenvolvimento , Carbono/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Mutação , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...